Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.09.02.506438

RESUMO

Identifying protein environments at the virus-host cell interface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the virus behind the ongoing COVID-19 pandemic, uses the cell surface ACE2 protein as a major receptor, but the contribution of other cellular proteins in the entry process is unknown. To probe the microenvironment of SARS-CoV-2 Spike-ACE2 protein interactomes on human cells, we developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) employing iridium photocatalysts conjugated to Spike for visible-light driven proximity labelling on host cells. Application of ViraMap on ACE2-expressing cells captured ACE2, the established co-receptor NRP1, as well as other proteins implicated in host cell entry and immunomodulation. We further investigated these enriched proteins via loss-of-function and over-expression in pseudotype and authentic infection models and observed that the Ig receptor PTGFRN and tyrosine kinase ligand EFNB1 can serve as SARS-CoV-2 entry factors. Our results highlight additional host targets that participate infection and showcase ViraMap for interrogating virus-host cell surface interactomes.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19
2.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.08.19.457020

RESUMO

Coronavirus disease-2019 (COVID-19) provokes a hypercoagulable state with increased incidence of thromboembolism and mortality. Platelets are major effectors of thrombosis and hemostasis. Suitable animal models are needed to better understand COVID-19-associated coagulopathy (CAC) and underlying platelet phenotypes. Here, we assessed K18-hACE2 mice undergoing a standardized SARS-CoV-2 infection protocol to study dynamic platelet responses via mass spectrometry-based proteomics. In total, we found significant changes in >1,200 proteins. Strikingly, protein alterations occurred rapidly by 2 days post-infection (dpi) and preceded outward clinical signs of severe disease. Pathway enrichment analysis of 2dpi platelet proteomes revealed that SARS-CoV-2 infection upregulated complement-coagulation networks (F2, F12, CFH, CD55/CD59), platelet activation-adhesion-degranulation proteins (PF4, SELP, PECAM1, HRG, PLG, vWF), and chemokines (CCL8, CXCL5, CXCL12). When mice started to lose weight at 4dpi, pattern recognition receptor signaling (RIG-I/MDA5, CASP8, MAPK3), and interferon pathways (IFIT1/IFIT3, STAT1) were predominant. Interestingly, SARS-CoV-2 spike protein in the lungs was observed by immunohistochemistry, but in platelets was undetected by proteomics. Similar to patients, K18-hACE2 mice during SARS-CoV-2 infection developed progressive lymphohistiocytic interstitial pneumonia with platelet aggregates in the lungs and kidneys. In conclusion, this model recapitulates activation of coagulation, complement, and interferon responses in circulating platelets, providing valuable insight into platelet pathology during COVID-19. Key PointsO_LISARS-CoV-2-infected humanized ACE2 mice recapitulate platelet reprogramming towards activation-degranulation-aggregation. C_LIO_LIComplement/coagulation pathways are dominant in platelets at 2 days post-infection (dpi), while interferon signaling is dominant at 4dpi. C_LI


Assuntos
Tromboembolia , Doenças Pulmonares Intersticiais , Transtornos da Coagulação Sanguínea , Síndrome Respiratória Aguda Grave , Hipercinese , Trombose , Transtornos Herdados da Coagulação Sanguínea , COVID-19
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.07.17.452554

RESUMO

The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases.


Assuntos
Infecções por Coronavirus , Síndrome Respiratória Aguda Grave , Viroses , COVID-19 , Inflamação
4.
Da-Yuan Chen; Nazimuddin Khan; Brianna J. Close; Raghuveera K. Goel; Benjamin Blum; Alexander H. Tavares; Devin Kenney; Hasahn L. Conway; Jourdan K. Ewoldt; Sebastian Kapell; Vipul C. Chitalia; Nicholas A. Crossland; Christopher S. Chen; Darrell N. Kotton; Susan C. Baker; John H. Connor; Florian Douam; Andrew Emili; Mohsan Saeed; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.358259

RESUMO

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
5.
Alison Green; Glyn Roberts; Timothy Tobery; Carol Vincent; Matteo Barili; Carolyn Jones; Kiyoshi Kita; Kouichi Morita; Jiro Yasuda; Sebastian Kapell; Vipul C. Chitalia; Nicholas A. Crossland; Christopher S. Chen; Darrell N. Kotton; Susan C. Baker; John H. Connor; Florian Douam; Andrew Emili; Mohsan Saeed; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.359257

RESUMO

Background: saliva is established to contain high counts SARS-CoV-2 virus and contact with saliva droplets, contaminated surfaces or airborne particles are sources of viral transmission. The generation of infective aerosols during clinical procedures is of particular concern. Therefore, a fuller understanding of the potential of mouthwash to reduce viral counts and modulate the risk of transmission in medical professional and public context is an important research topic. Method: we determined the virucidal activity of four anti-bacterial mouthwashes against a surrogate for SARS-CoV-2, Human CoV-SARS 229E, using a standard ASTM suspension test, with dilution and contact times applicable to recommended mouthwash use. Results: the mouthwash formulated with 0.07% Cetylpyridinium Chloride exhibited virucidal effects providing a [≥]3.0 log reduction HCoV-229E viral count. Mouthwashes containing 15.7% ethanol, 0.2% zinc sulphate heptahydrate and a mix of enzymes and proteins did not demonstrate substantive virucidal activity in this test. Conclusion: mouthwash containing 0.07% Cetylpyridinium Chloride warrants further laboratory and clinical assessment to determine their potential benefit in reducing the risk of SARS-CoV-2.


Assuntos
Síndrome Respiratória Aguda Grave
6.
Xiaoquan Li; Petr Lidsky; Yinghong Xiao; Chien-Ting Wu; Miguel Garcia-Knight; Junjiao Yang; Tsuguhisa Nakayama; Jayakar V. Nayak; Peter K. Jackson; Raul Andino; Xiaokun Shu; Nicholas A. Crossland; Christopher S. Chen; Darrell N. Kotton; Susan C. Baker; John H. Connor; Florian Douam; Andrew Emili; Mohsan Saeed; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.359042

RESUMO

More than a million people have now died from COVID-19, because of infection with the SARS-CoV-2 coronavirus. Currently, the FDA has approved remdesivir, an inhibitor of SARS-CoV-2 replication, to treat COVID-19, though very recent data from WHO showed little if any COVID19 protective effect. Here we report that ethacridine, a safe and potent antiseptic use in humans, effectively inhibits SARS-CoV-2, at very low concentrations (EC50 ~ 0.08 M). Ethacridine was identified through a high-throughput screening of an FDA-approved drug library in living cells using a fluorescent assay. Interestingly, the main mode of action of ethacridine is to inactivate virus particles, preventing binding to the host cells. Thus, our work has identified a potent drug with a distinct mode of action against SARS-CoV-2.


Assuntos
COVID-19 , Infecções por Coronavirus
7.
Antoine Rebendenne; Ana Luiza Chaves Valadão; Marine Tauziet; Ghizlane Maarifi; Boris Bonaventure; Rémi Planès; Joe McKellar; Sébastien Nisole; Mary Arnaud-Arnould; Olivier Moncorgé; Caroline Goujon; Nicholas A. Crossland; Christopher S. Chen; Darrell N. Kotton; Susan C. Baker; John H. Connor; Florian Douam; Andrew Emili; Mohsan Saeed; Ilayda Sahin; Cavit Kerem Kayhan; Fatma Tokat; Gurler Akpinar; Murat Kasap; Ayse Sesin Kocagoz; Ugur Ozbek; Dilek Telci; Fikrettin Sahin; Koray Yalcin; Siret Ratip; Umit Ince; Guldal Suyen; Ercument Ovali; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; John A Bachman; Benjamin M Gyori; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.28.358945

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic coronavirus to spill over to humans in less than 20 years, after SARS-CoV-1 in 2002-2003 and Middle East respiratory syndrome (MERS)-CoV in 2012. SARS-CoV-2 is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to severe lung injury and death in the most severe cases. The COVID-19 pandemic is currently a major health issue worldwide. Immune dysregulation characterized by altered innate cytokine responses is thought to contribute to the pathology of COVID-19 patients, which is a testimony of the fundamental role of the innate immune response against SARS-CoV-2. Here, we further characterized the host cell antiviral response against SARS-CoV-2 by using primary human airway epithelia and immortalized model cell lines. We mainly focused on the type I and III interferon (IFN) responses, which lead to the establishment of an antiviral state through the expression of IFN-stimulated genes (ISGs). Our results demonstrate that both primary airway epithelial cells and model cell lines elicit a robust immune response characterized by a strong induction of type I and III IFN through the detection of viral pathogen molecular patterns (PAMPs) by melanoma differentiation associated gene (MDA)-5. However, despite the high levels of type I and III IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication, whereas IFN pre-treatment strongly inhibited viral replication and de novo production of infectious virions. Taken together, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.


Assuntos
Infecções por Coronavirus , Pneumopatias , Morte , COVID-19 , Melanoma , Insuficiência Respiratória
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.07.29.227462

RESUMO

The spike (S) glycoprotein in the envelope of SARS-CoV-2 is densely glycosylated but the functions of its glycosylation are unknown. Here we demonstrate that S is recognized in a glycan-dependent manner by multiple innate immune receptors including the mannose receptor MR/CD206, DC-SIGN/CD209, L-SIGN/CD209L, and MGL/CLEC10A/CD301. Single-cell RNA sequencing analyses indicate that such receptors are highly expressed in innate immune cells in tissues susceptible to SARS-CoV-2 infection. Binding of the above receptors to S is characterized by affinities in the picomolar range and consistent with S glycosylation analysis demonstrating a variety of N- and O-glycans as receptor ligands. These results indicate multiple routes for SARS-CoV-2 to interact with human cells and suggest alternative strategies for therapeutic intervention.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA